

Fluid Analysis for Bearing Reliability

Question: Why Oil Analysis....?

Answer: To improve the lives of Maintenance & Reliability Engineers.....

An effectively executed fluid analysis program eliminates the guesswork, risk and reactionary nature of your maintenance department. When companies transition from preventive maintenance to predictive maintenance, they realize greater impact, uptime and savings. These are proven results that drive performance and business success.

POLARIS Laboratories, 2015

Why do Bearings fail, or impair reliable operations

- Mechanical Problems
 - Misalignment
 - Incorrect Fits
- Changes in Operation
 - Load
 - Temperature
- Contamination
- Fluid Condition

Condition Monitoring Techniques

Condition	Oil Analysis	Wear Debris Analysis	Vibration Analysis	Thermography		
Contamination	Excellent	Good	Poor	Poor		
Wear	Excellent	Excellent	Fair	Poor		
Misalignment	Poor	Fair	Excellent	Good		
Heat Problems	Fair	Fair	Poor	Excellent		
Gear/Bearing Defects	Poor	Poor	Excellent	Poor		

Contamination

Over 80% of equipment failures are contamination related breakdowns, oil analysis is one of the easiest ways to monitor contamination

Common Problems:

- Dirt
- Water
- Process
 Contaminants
- Grease
- Sealant/Build Debris
- Fuel Dilution
- Coolant

PARTICULATE CONTAMINATION

- Particles cause 82% of wear in the 6 main industrial sectors in Canada – National Research Council of Canada
- "Bearings can have an infinite life when particles larger than the lubricant film are removed." – SKF
- Compared to 40-micron filtration...wear was reduced 70% with 15-micron filtration." General Motors

ACCEPTABLE LEVELS OF WATER

- Research indicates that very small amounts of water reduce bearing life
- For turbine oil systems ASTM D4378 In-Service Monitoring Guideline lists 0.2% (2000 ppm) as maximum (which is too high)
- SKF recommends maximum of .02% (200 ppm) for bearings
- Best practice is to maintain lowest level practical below saturation point

HOW MUCH WATER IS TOO MUCH?

Life Extension Factor

ppm	2	3	4	5	6	7	8	9	10
50000	12500	6500	4500	3125	2500	2000	1500	1000	782
25000	6250	3250	2250	1563	1250	1000	750	500	391
10000	2500	1300	900	625	500	400	300	200	156
5000	1250	650	450	313	250	200	150	100	78
2500	625	325	225	156	125	100	75	50	39
1000	250	130	90	63	50	40	30	20	16
500	125	65	45	31	25	20	15	10	8
250	63	33	23	16	13	10	8	5	4
100	25	13	9	6	5	4	3	2	2

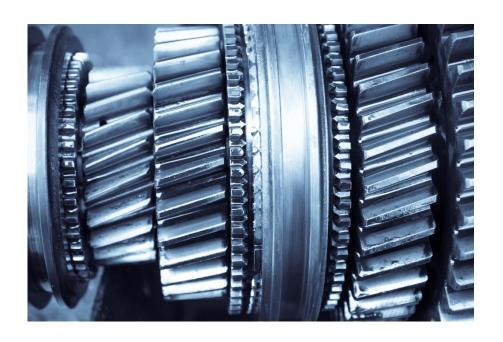
Estimated life extension for mechanical systems utilizing mineral-based fluids.

Example: By reducing average fluid moisture levels from 2500 ppm to 156 ppm machine life (MTBF) is extended by a factor of 5.

Fluid Condition

Acid Number & Oxidation

Viscosity


Additive Levels

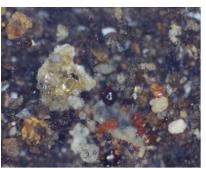
Fluid Analysis for Bearing Reliability

Wear Metal Monitoring

Iron	Chromium	Nickel	Aluminium 1	Copper	Lead	Tin	Cadmium	Silver	Titanium	Vanadium
13	0	0	1	2	0	0	0	0	0	0

Fluid Analysis for Bearing Reliability

					Wear	r Meta	als (p	(ma				M Co	ontam etals (inan	nt n)	М	ulti-S	ource	Metal	s (ppn	1)	Α	Additiv	ve Met	tals (pp	m)
Sample #		Iron			Aluminum	Copper	Lead	Tin	Cadmium	Silver	Vanadium				Potassium	Titanium	Molybdenum	Antimony	Manganese	Lithium	Boron	Magnesium	Calcium		Phosphorous	Zinc
19	9 :	2 () (0	1	0	0	0	0	0	2	4	(0	0	0	0	0	0	1	43	115	5 1	351	435
18	_	1 () (0	0	0	0	0	0		_	1	(0	0	0	0	0	0	0	42	106	0	330	410
17	_	1 (0	0	0	0	0	0	0	_	0	-	0	0	0	0	0	0	0	34	90		304	355
10	\rightarrow	0 (_	-	0	1	0	0	0	0	0	4	0	-	0	0	0	0	0	0	1	21	77		318	403
15	5) (0	1	0	0	0	0		1	1		0	0	0	0	0	0	1	27	81	0	314	38 /
				Sa	ample	e Infor	rmati	on						Co	onta	mina	nts			V		Fluid Properties				
ple #		Date Sampled		Date Received			1. 1.	Ollic	Change	Lube Added	Filter Change	100	Fuel Dilution			Soot		Water		Viscosity 40°C	Viscosity	100 °C	Acid	Base Number	Oxidation	Nitration
Sample		Date		Date			ur	nk	Lube		Filter	%	Vol		% Vol			% Vol		cSt	c	St K	mg OH/g	mg KOH/g	abs/cm	abs/0.1 mm
19	29-[Dec-20	13 05	Jan-2	2014				No		Unk							<.1-	FTIR	35.9		0.75			2	4
18	-	Nov-20	_	Nov-2					No		No							<.1 - FTIR		34.7		0.55			5	7
17	-	Oct-20	_	Oct-2	_				No		Unk							<.1 - FTIR		34.9		0.1			5	6
16	_	Aug-20	_						No		Unk							<.1 - FTIR		33.9		0.56			3	5
15	19-	Jun-201	13 08	3 08-Jul-2013 No Unk <.1 - FTIR 34.5											0.70		3	5								
						Parti	cle C	ount	(parti	cles/r	mL)									Add	lition	al Tes	ting			
* olumo 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bas 4/ 22/ 22/ 22/	Code sed On (6/14 / 22/20 / 21/18 / 21/17	> 4 µm 3689 2707 3813 3348	B 31 4 13 4 18	> 6 µm 1669 3091 8477 1315	> 10 µm 1846 3453 4653	9 9: 3 1: 3 1:	14 im 984 462 764	> 2] µm 275] 441 419 219	μ 1 4	38 m 51 41	> 70 µm 9 3 4	> 100 µm 2 1 1	M	Test Method Laser Laser Laser											


Laser

2116

Wear Debris Analysis

- Analytical Ferrography
 - Rubbing Wear
 - Abrasive Wear
 - Cutting Wear
 - Spheres (Pre-Cursor to Fatigue)
 - Spalling Wear (Fatigue)
 - Laminar Bearing Wear
 - Corrosive
 - Red Oxides
 - Black Oxides
 - Non-Metallic Contaminants

07-Oct-2013 300 47232 Yes 0 Yes <1 - Estimate

350 47715 Yes 0

21 25-Mar-2014 22-Apr-2014

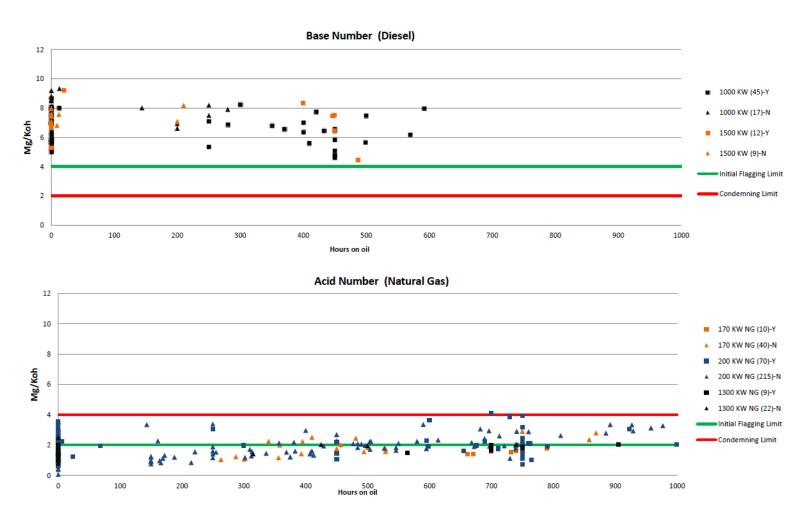
Going Beyond The Sample Report

Lubricant Analysis Report

North America: +1-877-808-3750

																		Overs	II report	severi	ty based (on con	nments	L.	
		Į.	ccou	nt Infon	mation			\perp			Compo								Samp	ole Inf	formati	on			
		t Num									ent ID:						Т	racking	g Num	ber:					HOME MENU LOGOUT
C	ompa	any Na									ary ID:							Lal	b Num	ber:	I-09815	53			
1		Cont						C	•		t Type: DIESEL ENGINE						Lab Location: Indianapolis								SEVERITY STATUS
1	Address:								Manufacturer: CATERPILLAR							Data Analyst: JDT								Week	
1	Phone Number:							Model: 980G							Sampled: 17-May-2014								61		
1									Д	pplic	ation:	QUAR	RY						Recei	ved:	20-jun	-201	4		0: 61 (71%)
									Sump	р Сар	acity:														
			Filter	r Inform	ation			+		M	iscellar	neous	Inform	nation	1				Produ	act Inf	formati	on			2: 9 (10%)
г	F	ilter T	me:	FULLFLO)W			\top									Produ	ct Man	ufacti	irer:	MOBIL				■ 3: 0 (N/A)
		on Rat	•																		DELVA	C 130	00 SU	PER	4: 2 (2%)
1																		Viscos	ity Gr	ade:	SAE 15	W40			9
(omm	ents	SUG	GEST IN	SPECT	ING thi	is unit	t for	exces	sive	bearin	g wea	r; Sug	gest l	NSPE	CTING	COOL	ING SY	STEM	(head	d gaske	t, he	ads, :	seals,	14
			EGR	gasket: ERE LEV	s, etc.)	for lea	ks. C	oolar	nt indi	icato	rs (Sod	ium a	are a	ta SEV	ERE LI	EVEL.	Beari	ng met	alis:	at a					
			half	interval	EL; LUI	e mix	ing po	05510	ile du	e to c	nange	in ad	antive	ieveis	; LUB	ricant	and Til	ter cna	inge a	CKNO	wieage	ı; ne	samp	ile at	
=	$\overline{}$										-														
				Wes	ar Meta	de (no	1					ntamir tals (p			nulei. S		Matal	s (ppm	,	٨٨	ditive N		- (l	
г		\top	\top	11/6	Meta	iis tppi	- T		$\overline{}$	$\overline{}$	ME	Leis (p	pini,	- 12	luiu-s	Jource	Metal	- Appini	,	AU	uitive	ieta	s (pp	T	SAMPLES SUGGESTING MAINTENANCE
										l													w		
		E		E				_		٤.			£		5		8			Ę			ĕ		JRER: LAB NO. SAMPLED: LUBE TIME: LUBE CHG:
9		1 =	١_	. 5	la la			5		Ę		ε	- 5	Ę	9	8	ağ I	ε		8	E	8	Q.		645203 02/11/2008 40 Y
18	۱ ۔	E	a ×	1 2	8	2			je l	ĕ	8	1 €	88	를	1 8	<u>ş</u>	ĝ	-2	8	5	3	ē	8	Q	SEVERITY: RECEIVED: UNIT TIME: LUBE ADD:
J.	8	5	ĕ	a P	8	3	Ę١	రి	5	8	55	Š	2	Æ	≗	ş	Σ	3	S S	£	3	Ba	Æ	Zin	4 02/12/2008 9540 55000
18	21	. 0	0	0	1	0	0	0	0	0	4	3	2	0	33	0	0	0	24	469	922	0	575	698	COOLANT INDICATORS (SODIUM, POTASSIUM) ARE AT A MODERATE LEVEL; COOLANT LEAKS AT THIS LEVEL WILL
19	12	0	0	0	1	0	0	0	0	0	2	2	0	0	33	0	0	0	23	537	1035	0	652	731	
20	33	0	0	2	20	7	1	0	0	0	4	118	9	0	76	0	0	0	15	798	1416	0	944	1126	AND FILTER CHANGE ACKNOWLEDGED; RESAMPLE IN 30 DAYS;
21	27	0	0	0	12	3	0	0	0	0	4	54	6	0	56	0	0	0	15	777	1427	0	878	1068	8
22	41	. 1	1	1	85	71	1	0	0	0	6	651	15	0	171	0	0	0	13	705	1321	0	871	1087	
			•	Samo	le Info	rmatio	n			_	_	_	Cont	amin	ants	_				Fluid	Proper	ties		_	665369 03/06/2008 250 N
г			\top		Φ			\top	\neg	\neg			1						T	1		T	_		SEVERITY: RECEIVED: UNIT TIME: LUBE ADD: 4 03/14/2008 7950
		8		8	E	Ĕ	١.		_			c						2	₽,	.	às l	b	ĮĢ.	8	4 03/14/2008 /350
		ğ		é	<u>a</u>	Ē	8	و (۹	2 S	8	70	율		44			į.	VIscos 40°C	85	פ	E 8	흔	g	age	LUBRICANT AND FILTER CHANGE IS SUGGESTED IF NOT DONE AT SAMPLING TIME: SUGGEST PERFORMING COOLING
91		Ē		ě	Ë	Ť	18	1 1	100	81	Fuel	ă		Soot		-	M GIG	8.0	N N N	ğ	N S	₽	ρχί	鱼	ASSIUM) ARE AT A SIGNIFICANT LEVEL; BEARING METAL IS AT A SEVERE LEVEL; HIGH IRON AND/OR CHROME AND/OR
횰		Q)		e e	-	-	18		-	is l		_							-		_ _	_			R IS AT A MODERATE LEVEL; FLAGGED ADDITIVE LEVELS ARE DIFFERENT THAN WHAT SHOULD BE PRESENT FOR THE
Sall		ĕ		ĕ	l h	Ь	11	3 8	gal	Ě	96 \	Vol		% Vol		%	Vol	cSt	cSt	KOH	ig m H/g KOH	o I/o al	s/cm	abs/0.1 mm	
18	23-Ap	pr-2012	02-N	May-2012	350	4466	3 Ye	_		Unk	>10		_	7 - FTI	R	<.1			5.7	_	4.2		10	8	†
		in-2012		Jun-2012	300	4507		5	\rightarrow	Yes	>10	- GC	_	6 - FTI	_	<.1		T	7.0		7.2	_	15	7	1
\vdash			-		_	_	_	_	_	_			_		$\overline{}$			_			_	_	_		→

15


<.1 - FTIR

14.6

Charts Identify trends

Getting Started – Program implementation

Know your equipment and share your knowledge

- Full Details for Equipment
- Manufacturer
- Model
- Lubricant Type & Grade
- Filtration
- Sump Volume
- Running Hours
- Working Environment
- Specific Issues with a machine

All this affects Data Interpretation

Component Information

Component ID: GATE-PA

GEARBOX

Secondary ID: GOLDEN GATE

Component Type: MARINE TRANSMISSION

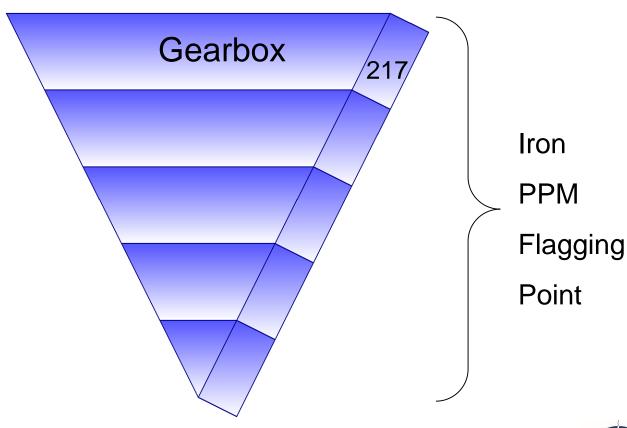
Manufacturer: ZF

Model: 7550

Application: MARINE

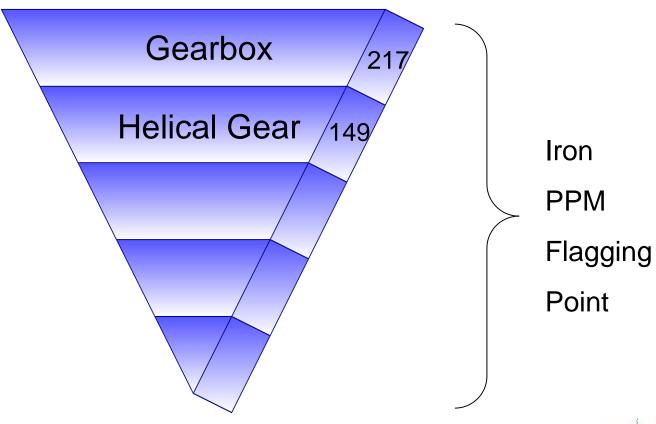
Sump Capacity: 15 gal

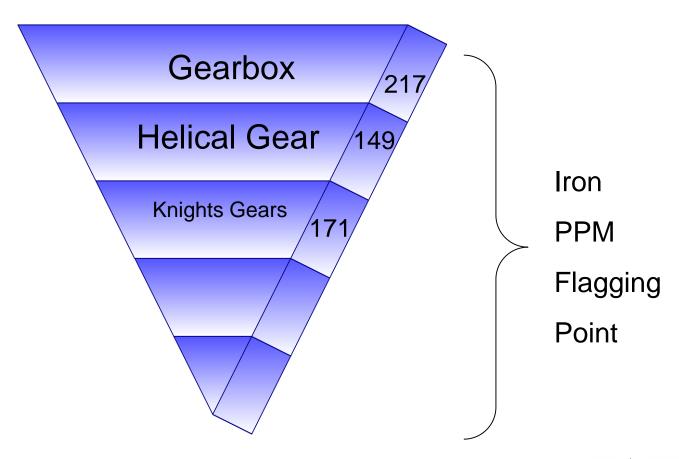
Product Information

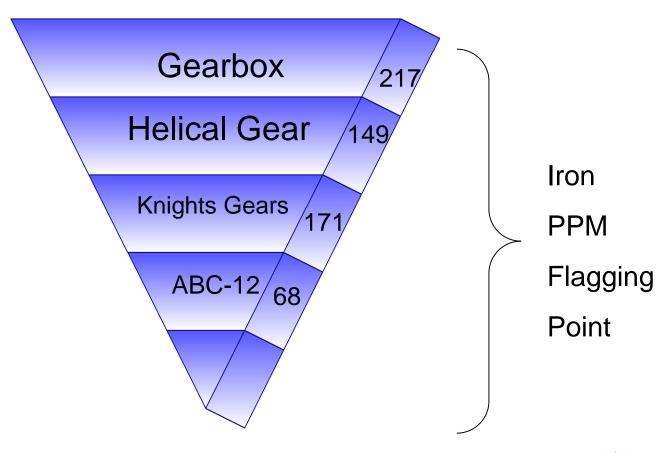

Product Manufacturer: CHEVRON

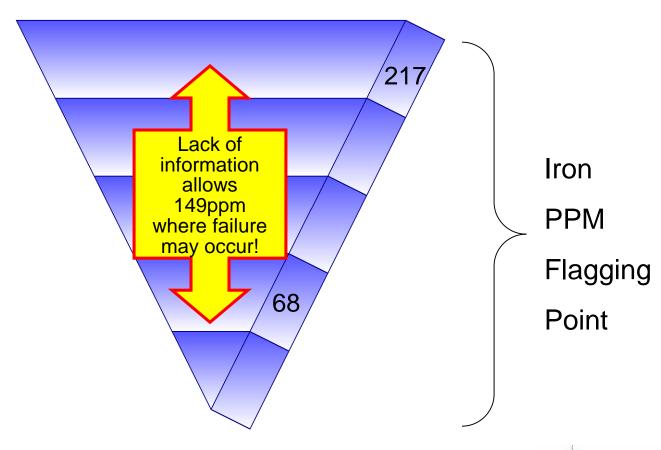
Product Name: DELO 400

Viscosity Grade: SAE 15W40

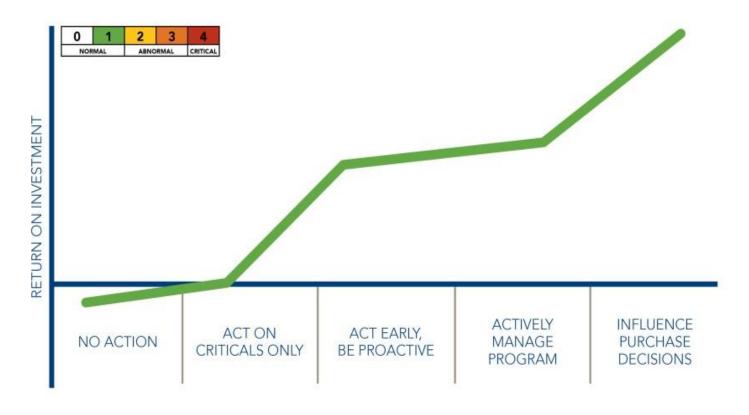








Fluid Analysis for Bearing Reliability


Build the Business Case

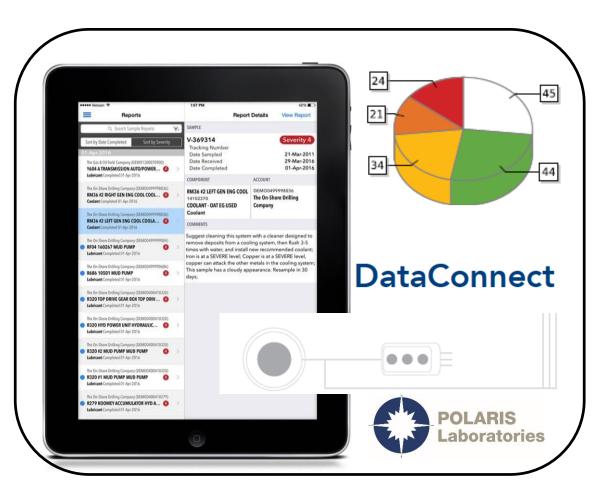
How much can Oil Analysis save your company

What do I need..?

Prepare Your Team [People]

- Leadership Support
- Organizational Goals
- Monitor Key Performance Indicators
- Personal Accountability
- Training

Prepare Your Process


- Standardized Procedures
- Proper Tools
- Task Integration
- Work Orders
- Track Savings

Prepare The Technology

- System Integration
- Mobile Devices
- Management Reports

Return On Investment

Conclusions

- Regular Oil Analysis WILL improve your Bearing Reliability
- Ensure your program is set up accurately
- Determine what you want to achieve from Oil Analysis
- Develop a plan to execute the project
- Fully understand the services available to you
- Meet regularly internally and with laboratory provider
- Use the Data from YOUR samples to assist in reliability and maintenance decisions

Thank you.....

Any Questions or Discussion

Gwyn Simmonds, European Territory Sales Manager

+44 7766 073860

gsimmonds@polarislabs.com

www.polarislabs.com

www.linkedin.com/in/gwynsimmonds

